(((x^2)-2)/4)-(((3x^2)+4)/8)-((2x+3)/6)-((6x+4)/12)=0

Simple and best practice solution for (((x^2)-2)/4)-(((3x^2)+4)/8)-((2x+3)/6)-((6x+4)/12)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your hom

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (((x^2)-2)/4)-(((3x^2)+4)/8)-((2x+3)/6)-((6x+4)/12)=0 equation:



(((x^2)-2)/4)-(((3x^2)+4)/8)-((2x+3)/6)-((6x+4)/12)=0
We calculate fractions
(-36x^2)/()+12x^2/()+(-24x)/()+(-36x)/()=0
We multiply all the terms by the denominator
(-36x^2)+12x^2+(-24x)+(-36x)=0
We add all the numbers together, and all the variables
12x^2+(-36x^2)+(-24x)+(-36x)=0
We get rid of parentheses
12x^2-36x^2-24x-36x=0
We add all the numbers together, and all the variables
-24x^2-60x=0
a = -24; b = -60; c = 0;
Δ = b2-4ac
Δ = -602-4·(-24)·0
Δ = 3600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{3600}=60$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-60)-60}{2*-24}=\frac{0}{-48} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-60)+60}{2*-24}=\frac{120}{-48} =-2+1/2 $

See similar equations:

| 4m²-5=31 | | 2-5)5m-5)=-73 | | 2x+3x+140+150=360 | | 3x-40=23 | | -7y=y+10 | | 3(2a-^)=36 | | F(x)=10^(3X) | | v/5+14=23 | | 6a-7-a=-8 | | x*25=12 | | 2(-2x-8)=-44 | | 7(-3x+5)=-196 | | 5(a+1)=12-2a | | -31/4n=2 | | 2x+16+3x=36 | | -2(6+2x)=-12 | | 2x*6x+20=180 | | 6(1x-9)=-30 | | 4(b-5)=8-4 | | 8w+13=7w-11 | | k^2+3k-9=0 | | 1.3w=2.7 | | 5(7x-6)=215 | | -5+2v=5 | | u=8-3u | | 1/4(28x-16)=7x-3 | | 4(-2x+7)=-4 | | 5-7+9m=11 | | 4(-2x+7=-4 | | 3+10=x-16 | | 32,663=p=11.363 | | 6/7n-2=-4 |

Equations solver categories